6 research outputs found

    Robust Control Methods for a Recycle Bioreactor

    Get PDF
    The paper presents a robust control design strategy for bioprocesses, which are characterized by strongly nonlinear dynamics. More precisely, we present the H2 methodology in order to compute the controller for a recycle Continuous Stirred Tank Bioreactor (CSTB). We consider a general method of formulating control problem, which makes use of linear fractional transformation as introduced by Doyle (1978). The formulation makes use of the general two-port configuration of the generalized plant with a generalized controller. The H2 norm is the quadratic criterion used in optimal control as LQG. The overall control objective is to minimize the H2 norm of the transfer matrix function from the weighted exogenous inputs to the weighted controlled outputs. The advantage of H2 control technique, which uses the linearized model of the CSTB, is that it is completely automated and very flexible. Finally, we prove that the closed loop control structure has very good inner robustness

    Control of PMSM Based on Switched Systems and Field-Oriented Control Strategy

    No full text
    Starting from the problem of studying the parametric robustness in the case of the control of a permanent magnet-synchronous motor (PMSM), although robust control systems correspond entirely to this problem, due to the complexity of the algorithms of the robust type, in this article the use of switched systems theory is proposed as a study option, given the fact that these types of systems are suitable both for the study of systems with variable structure and for systems with significant parametric variation under conditions of lower complexity of the control algorithms. The study begins by linearizing a PMSM model at a static operating point and continues with a systematic presentation of the basic elements and concepts concerning the stability of switched systems by applying these concepts to the control system of a PMSM based on the field-oriented control (FOC) strategy, which usually changes the value of its parameters during operation (stator resistance Rs, stator inductances Ld and Lq, but also combined inertia of PMSM rotor and load J). The numerical simulations performed in Simulink validate the fact that, for parametric variations of the PMSM structure, the PMSM control switched systems preserve qualitative performance in terms of its control. A series of Matlab programs are presented based on the YALMIP toolbox to obtain Pi matrices, by solving Lyapunov–Metzler type inequalities, and using dwell time to demonstrate stability, as well as the qualitative study of the performance of PMSM control switched systems by presenting in phase plane and state space analysis of the evolution of state vectors: ω PMSM rotor speed, iq current, and id current
    corecore